django-oidc-provider Documentation
Release 0.8.0

Juan Ignacio Fiorentino

Dec 15, 2023

CONTENTS

Installation 3
1.1 Requirements o o it e e e e e e e e e e e e e 3
1.2 Quick Installation L e e e e 3
Relying Parties 5
2.1 Properties e e e e 5
2.2 Usingtheadmin e 6
23 Custom VIEW o o e e e e e e e e e e e e e e 7
2.4 Programmatically e e e e e e e e 7
Server Keys 9
Templates 11
Scopes and Claims 13
5.1 How topopulate standard claims L. e e 13
5.2 Howtoaddcustomscopesandclaims Lo L 14
User Consent 17
6.1 Properties e e e e e e e e e e e 17
OAuth2 Server 19
7.1 Protecting VIBWS v v i i e 19
7.2 Client Credentials Grant e e 19
Access Tokens 21
8.1 Obtaining an Access Token o e e e e e 21
8.2 Expiration and Refresh of Access Tokens 22
Session Management 23
0.1 Setup e e e e e e e 23
9.2 ExampleRPiframe. e 23
9.3 RP-Initiated Logout e 24
Token Introspection 27
10.1 Client Setup e e e e 27
10.2 Introspection Endpoint L e e 27
10.3 Introspection Endpoint Errors oo 28
Settings 29
11.1 OIDC_LOGIN_URL o e e s e e e e s s 29

12

13

14

15

11.2 SITE_URL e e e e 29

11.3 OIDC_AFTER_USERLOGIN_HOOK 29
11.4 OIDC_AFTER_END_SESSION_HOOK 30
11.5 OIDC_CODE_EXPIRE e e e e e e e e e 30
11.6 OIDC_DISCOVERY_CACHE_ENABLE e 30
11.7 OIDC_DISCOVERY_CACHE_EXPIRE 30
11.8 OIDC_EXTRA_SCOPE_CLAIMS e e e e s 30
11.9 OIDC_IDTOKEN_INCLUDE_CLAIMS e e e e e 31
11.10 OIDC_IDTOKEN_EXPIRE e e e e e e e e e 31
11.11 OIDC_IDTOKEN_PROCESSING_HOOK e 31
11.12 OIDC_IDTOKEN_SUB_GENERATOR e e 32
11.13 OIDC_INTROSPECTION_PROCESSING_HOOK 32
11.14 OIDC_INTROSPECTION_VALIDATE_AUDIENCE_SCOPE 32
11.15 OIDC_SESSION_MANAGEMENT_ENABLE 32
11.16 OIDC_UNAUTHENTICATED_SESSION_MANAGEMENT KEY 33
11.17 OIDC_SKIP_CONSENT_EXPIRE e 33
11.18 OIDC_TOKEN_EXPIRE e e e e e s 33
11.19 OIDC_USERINFO e e e e e s s s s 33
11.20 OIDC_GRANT_TYPE_PASSWORD_ENABLE 34
11.21 OIDC_TEMPLATES e e e e e e e e e e e e e 34
11.22 OIDC_INTROSPECTION_RESPONSE_SCOPE_ENABLE 34
Signals 35
12.1 USer_acCept_CONSENL v v v v v v v v i e 35
12.2 user_decline CONSENt i o e e e e e e e e e e 35
Examples 37
13.1 PurelS clientusing Implicit Flow oo 37
Contribute 39
14.1 Running Tests o o i i e e e e e e e e e e e e 39
14.2 Improve Documentation L. 39
Changelog 41
15.1 Unreleased e e e e e e e e e e e e 41
152 0.8.2 . . e e e 41
153 0.8.1 o . o e e e 41
154 0.8.0 . . o e 41
155 0.7.0 . o o e e e e 42
15.6 0.6.2 . . L e e e e e e e e e e e 42
15.7 0.6.1 . . e e e 42
15.8 0.6.0 . . . L e e e 43
159 0.5.3 . o e 43
15.10 0.5.2 . o o e e e e 43
15,11 0.5.1 . o o e e e e e e e e e e e e e e 43
1512 0.5.0 . o e 44
1513 0.4.4 . o e e e e 44
15,14 0.4.3 e e e e e e e e 44
1515 0.4.2 . o e e e 44
15.16 0.4.1 . o o e e e e 45
1517 0.4.0 . . o e e e e e e e e e e e e e e e e 45
15.18 0.3.7 o o o e e e e e 45
1519 0.3.6 . . o e e e e e e 45
1520 0.3.5 . o o e e 45
1521 0.3.4 . e e e 46

1522 0.3.3 46

15.23 0.3 o o e e e e 46
15.24 0.3.1 . . e e e e e e 46
1525 0.3.0 . . e e e 46
15.26 0.2.5 . e e e 47
1527 0.2.4 . o e e 47
15.28 0.2.3 . . e e e 47
15.29 0.2.1 . o e e e e e 47
1530 0.2.0 . . o e e e e e e e 48
1531 0.1.2 . e e e e e e e e 48
1532 O0.1.1 . o e e e e 48
15.33 0.1.0 . . o o e e e 48
15.34 0.0.7 . o o e e e e e 48
1535 0.0.6 . . . L e e e e e e e 49
1536 0.0.5 . . o e e 49
1537 0.0.4 . o o e e e e e 49
15.38 0.0.3 . . L e e 49
15.39 0.0.2 . o L e e e 49
15.40 0.0.1 . . o e e e e e e 50
15.41 0.0.0 . . . e e e 50
16 Indices and tables 51

django-oidc-provider Documentation, Release 0.8.0

This tiny (but powerful!) package can help you to provide out of the box all the endpoints, data and logic needed to
add OpenID Connect capabilities to your Django projects. And as a side effect a fair implementation of OAuth2.0 too.
Covers Authorization Code, Implicit and Hybrid flows.

Also implements the following specifications:
¢ OpenlD Connect Discovery 1.0
¢ OpenlD Connect Session Management 1.0
* OAuth 2.0 for Native Apps
* OAuth 2.0 Resource Owner Password Credentials Grant

* Proof Key for Code Exchange by OAuth Public Clients

Before getting started there are some important things that you should know:

* Despite that implementation MUST support TLS, you can make request without using SSL. There is no control
on that.

* Supports only requesting Claims using Scope values, so you cannot request individual Claims.

* If you enable the Resource Owner Password Credentials Grant, you MUST implement protection against brute
force attacks on the token endpoint

Contents:

CONTENTS 1

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-01
https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc7636

django-oidc-provider Documentation, Release 0.8.0

2 CONTENTS

CHAPTER
ONE

INSTALLATION

1.1 Requirements
e Python: 3.83.93.103.11
e Django: 3.2 4.2

1.2 Quick Installation

If you want to get started fast see our /example folder in your local installation. Or look at it on github.

Install the package using pip:

[$ pip install django-oidc-provider

Add it to your apps in your project’s django settings:

INSTALLED_APPS = [
...
'oidc_provider',
...

]

Include our urls to your project’s urls.py:

urlpatterns = [

...

path('openid/', include('oidc_provider.urls', namespace='oidc_provider')),
]

Run the migrations and generate a server RSA key:

$ python manage.py migrate
$ python manage.py creatersakey

Add this required variable to your project’s django settings:

[LOGIN_URL = '/accounts/login/' J

https://github.com/juanifioren/django-oidc-provider/tree/master/example

django-oidc-provider Documentation, Release 0.8.0

4 Chapter 1. Installation

CHAPTER
TWO

RELYING PARTIES

Relying Parties (RP) creation is up to you. This is because is out of the scope in the core implementation of OIDC. So,
there are different ways to create your Clients (RP). By displaying a HTML form or maybe if you have internal trusted
Clients you can create them programatically. Out of the box, django-oidc-provider enables you to create them by hand
in the django admin.

OAuth defines two client types, based on their ability to maintain the confidentiality of their client credentials:

e confidential: Clients capable of maintaining the confidentiality of their credentials (e.g., client implemented
on a secure server with restricted access to the client credentials).

» public: Clients incapable of maintaining the confidentiality of their credentials (e.g., clients executing on the
device used by the resource owner, such as an installed native application or a web browser-based application),
and incapable of secure client authentication via any other means.

2.1 Properties

e name: Human-readable name for your client.

e client_type: Values are confidential and public.

e client_id: Client unique identifier.

* client_secret: Client secret for confidential applications.

» response_types: The flows and associated response_type values that can be used by the client.

e jwt_alg: Clients can choose which algorithm will be used to sign id_tokens. Values are HS256 and RS256.
* date_created: Date automatically added when created.

e redirect_uris: List of redirect URIs.

* require_consent: If checked, the Server will never ask for consent (only applies to confidential clients).

* reuse_consent: If enabled, the Server will save the user consent given to a specific client, so that user won’t
be prompted for the same authorization multiple times.

Optional information:
* website_url: Website URL of your client.
* terms_url: External reference to the privacy policy of the client.
* contact_email: Contact email.

* logo: Logo image.

django-oidc-provider Documentation, Release 0.8.0

2.2 Using the admin

We suggest you to use Django admin to easily manage your clients:

Dj ango a dministration WELCOME, JUANIFIOREN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home : OpeniD Connect Provider > Clients » Testing

Change Client

Name: Testing

Client Type: Public .

Confidential clients are capable of maintaining the confidentiality of their credentials. Public clients are incapable.

Response Type: code token (Hybrid Flow) H

Redirect URIs: http://localhost:3000

Enter each URI on a new line.

JWT Algorithm: RS256 ¥

Algarithm used to encode ID Tokens.

Credentials

Client ID: 344813

Client SECRET:

Contact Email:
Website URL:
Terms URL:
External reference to the privacy policy of the client.
Logo Image: Choose File | Mo file chosen
Date Created: Sept. 7, 2016

For re-generating client_secret, when you are in the Client editing view, select “Client type” to be public. Then
after saving, select back to be confidential and save again.

6 Chapter 2. Relying Parties

django-oidc-provider Documentation, Release 0.8.0

2.3 Custom view

If for some reason you need to create your own view to manage them, you can grab the form class that the admin makes
use of. Located in oidc_provider.admin.ClientForm.

Some built-in logic that comes with it:
e Automatic client_id and client_secret generation.

* Empty client_secret when client_type is equal to public.

2.4 Programmatically

You can create a Client programmatically with Django shell python manage.py shell:

>>> from oidc_provider.models import Client, ResponseType

>>> ¢ = Client(name='Some Client', client_id='123', client_secret='456", redirect_uris=[
—'http://example.com/'])

>>> c.save()

>>> c.response_types.add(ResponseType.objects.get(value="code"))

Read more about client creation in the OAuth2 spec

2.3. Custom view 7

http://tools.ietf.org/html/rfc6749#section-2

django-oidc-provider Documentation, Release 0.8.0

8 Chapter 2. Relying Parties

CHAPTER
THREE

SERVER KEYS

Server RSA keys are used to sign/encrypt ID Tokens. These keys are stored in the RSAKey model. So the package will
automatically generate public keys and expose them in the jwks_uri endpoint.

You can easily create them with the admin:
Or by using python manage.py creatersakey command.

Here is an example response from the jwks_uri endpoint:

GET /openid/jwks HTTP/1.1
Host: localhost:8000

{
"keys": [
{
"use":"sig",
"e":"AQAB",
"kty":"RSA",
"alg":"RS256",

"n":"3GmOpS7ij_
—SnY96wkbaki74MUY JrobXec06xJhvmAEEhMHGpOOmM4H2nbOWT £6Jc1FiiSvgvhObVk9xPOM6gMTQ5D5pfWZ jNk99

n
—

"kid":"a38ea7fbf944cc060eaf5acc1956b0e3"

aDIXVAE4TImM8S

django-oidc-provider Documentation, Release 0.8.0

10 Chapter 3. Server Keys

CHAPTER
FOUR

TEMPLATES

Add your own templates files inside a folder named templates/oidc_provider/. You can copy the sample html
files here and customize them with your own style.

authorize.html:

<h1>Request for Permission</hl>

<p>Client {{ client.name }} would like to access this information of.
—you ...</p>

<form method="post" action="{ rl 'oidc_provider:authorize' %}">
{% csrf_token %}
{{ hidden_inputs }}

{% for scope in scopes %}
{{ scope.name }}
<i>{{ scope.description }}</i></1i>
{% endfor %}

<input type="submit" value="Decline" />
<input name="allow" type="submit" value="Authorize" />

</form>

error.html:

<h3>{{ error }}</h3>
<p>{{ description }}</p>

You can also customize paths to your custom templates by putting them in OIDC_TEMPLATES in the settings.

The following contexts will be passed to the authorize and error templates respectively:

For authorize template
{
'client': 'an instance of Client for the auth request',
'hidden_inputs': 'a rendered html with all the hidden inputs needed for.
—AuthorizeEndpoint',
'params': 'a dict containing the params in the auth request',
(continues on next page)

11

django-oidc-provider Documentation, Release 0.8.0

(continued from previous page)

'scopes': 'a list of scopes'
3
For error template
{
'error': 'string stating the error',
'description': 'string stating description of the error'’
3
12 Chapter 4. Templates

CHAPTER
FIVE

SCOPES AND CLAIMS

This subset of OpenID Connect defines a set of standard Claims. They are returned in the UserInfo Response.

The package comes with a setting called OIDC_USERINFO, basically it refers to a function that will be called with

claims (dict) and user (user instance). It returns the claims dict with all the claims populated.

List of all the claims keys grouped by scopes:

profile email phone address
name email phone_number formatted
given_name email_verified phone_number_verified street_address
family_name locality
middle_name region
nickname postal_code
preferred_username country
profile

picture

website

gender

birthdate

zoneinfo

locale

updated_at

5.1 How to populate standard claims

Somewhere in your Django settings.py:

[OIDC_USERINFO = 'myproject.oidc_provider_settings.userinfo'

Then inside your oidc_provider_settings.py file create the function for the OIDC_USERINFO setting:

def userinfo(claims, user):
Populate claims dict.
claims['name'] = ' '.format(user.first_name, user.last_name)
claims['given_name'] = user.first_name
claims['family_name'] user.last_name
claims['email'] = user.email
claims['address']['street_address'] = '...

(continues on next page)

13

django-oidc-provider Documentation, Release 0.8.0

(continued from previous page)

return claims

Now test an Authorization Request using these scopes openid profile email and see how user attributes are re-
turned.

Note: Please DO NOT add extra keys or delete the existing ones in the claims dict. If you want to add extra claims
to some scopes you can use the OIDC_EXTRA_SCOPE_CLATNS setting.

5.2 How to add custom scopes and claims

The OIDC_EXTRA_SCOPE_CLATINS setting is used to add extra scopes specific for your app. Is just a class that inherit
from oidc_provider.lib.claims.ScopeClaims. You can create or modify scopes by adding this methods into it:

* info_scopename class property for setting the verbose name and description.
* scope_scopename method for returning some information related.

Let’s say that you want add your custom foo scope for your OAuth2/OpenlD provider. So when a client (RP) makes
an Authorization Request containing foo in the list of scopes, it will be listed in the consent page (templates/
oidc_provider/authorize.html) and then some specific claims like bar will be returned from the /userinfo
response.

Somewhere in your Django settings.py:

[OIDC_EXTRA_SCOPE_CLAIMS = 'yourproject.oidc_provider_settings.CustomScopeClaims'

Inside your oidc_provider_settings.py file add the following class:

from django.utils.translation import ugettext_lazy as _
from oidc_provider.lib.claims import ScopeClaims

class CustomScopeClaims(ScopeClaims):

info_foo = (
_(u'Foo"),
_(u'Some description for the scope.'),

def scope_foo(self):
self.user - Django user instance.
self.userinfo - Dict returned by OIDC_USERINFO function.
self.scopes - List of scopes requested.
self.client - Client requesting this claims.

dic = {

'bar': 'Something dynamic here',
}
return dic

If you want to change the description of the profile scope, you can redefine it.

(continues on next page)

14 Chapter 5. Scopes and Claims

django-oidc-provider Documentation, Release 0.8.0

(continued from previous page)
info_profile = (
_(u'Profile'),
_(u'Another description.'),

Note: If afield is empty or None inside the dictionary you return on the scope_scopename method, it will be cleaned
from the response.

5.2. How to add custom scopes and claims 15

django-oidc-provider Documentation, Release 0.8.0

16 Chapter 5. Scopes and Claims

CHAPTER
SIX

USER CONSENT

The package store some information after the user grant access to some client. For example, you can use the
UserConsent model to list applications that the user have authorized access. Like Google does here.

>>> from oidc_provider.models import UserConsent
>>> UserConsent.objects.filter(user__email="some@email.com")
[<UserConsent: Example Client - some@email.com>]

Note: the UserConsent model is not included in the admin.

6.1 Properties

* user: Django user object.

* client: Relying Party object.

e expires_at: Expiration date of the consent.
* scope: Scopes authorized.

e date_given: Date of the authorization.

17

https://security.google.com/settings/security/permissions

django-oidc-provider Documentation, Release 0.8.0

18 Chapter 6. User Consent

CHAPTER
SEVEN

OAUTH2 SERVER

Because OIDC is a layer on top of the OAuth 2.0 protocol, this package also gives you a simple but effective OAuth2
server that you can use not only for logging in your users on multiple platforms, but also to protect other resources you
want to expose.

7.1 Protecting Views

Here we are going to protect a view with a scope called read_books:

from django.http import JsonResponse
from django.views.decorators.http import require_http_methods

from oidc_provider.lib.utils.oauth2 import protected_resource_view

@require_http_methods(['GET'])
@protected_resource_view(['read_books'])
def protected_api(request, *args, **kwargs):

dic = {
'protected': 'information',

}

return JsonResponse(dic, status=200)

7.2 Client Credentials Grant

The client can request an access token using only its client credentials (ID and SECRET) when the client is requesting
access to the protected resources under its control, that have been previously arranged with the authorization server
using the client.scope field.

Note: You can use Django admin to manually set the client scope or programmatically:

client.scope = ['read_books', 'add_books']
client.save()

This is how the request should look like:

19

django-oidc-provider Documentation, Release 0.8.0

POST /token HTTP/1.1

Host: localhost:8000

Authorization: Basic..

—eWZ3a3cOcWxtaHYOcToyVWEOQjVzR1hmZ3pNeXR5d1FgTO1 jNUsxYmpWeXhXeXRySVdsTmpQbld3\
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials

A successful access token response will like this:

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"token_type" : "Bearer",
"access_token" : "eyJhbGciOiJSUzIINiIsImtpZCI6IjEifQ.eyJlzY3AiOlsib3BlbmlkIiw...",
"expires_in" : 3600,
"scope" : "read_books add_books"
}

Token introspection can be used to validate access tokens requested with client credentials if the
OIDC_INTROSPECTION_VALIDATE_AUDIENCE_SCOPE setting is False.

20 Chapter 7. OAuth2 Server

CHAPTER
EIGHT

ACCESS TOKENS

At the end of the login process, an access token is generated. This access token is the thing that is passed along with
every API call to the openid connect server (e.g. userinfo endpoint) as proof that the call was made by a specific person
from a specific app.

Access tokens generally have a lifetime of only a couple of hours. You can use OIDC_TOKEN_EXPIRE to set a custom
expiration time that suits your needs.

8.1 Obtaining an Access Token

Go to the admin site and create a confidential client with response_types = code and redirect_uri = http:/
/example.org/.

Open your browser and accept consent at:

http://localhost:8000/authorize?client_id=651462&redirect_uri=http://example.org/&
—.response_type=code&scope=openid email profile&state=123123

In the redirected URL you should have a code parameter included as query string:

[http ://example.org/?code=b9cedb346ee®4fl15abld3ac13da92002&state=123123

‘We use the code value to obtain access_token and refresh_token:

curl -X POST \
-H "Cache-Control: no-cache" \
-H "Content-Type: application/x-www-form-urlencoded" \
"http://localhost:8000/token/" \
-d "client_id=651462" \
-d "client_secret=37blc4f£826£8d78bd45e25bad75a2c0" \
-d "code=b9cedb346ee04f15abld3ac13da92002" \
-d "redirect_uri=http://example.org/" \
-d "grant_type=authorization_code"

Example response:

{
"access_token": "82b35£f3d810f4cf49dd7a52d4b22a594",

"token_type": "bearer",
"expires_in": 3600,
"refresh_token": "Obac2d80d75d46658b0b31d3778039bb",

(continues on next page)

21

django-oidc-provider Documentation, Release 0.8.0

(continued from previous page)

"id_token": "eyJhbGciOiJSUzI1INiIsImtpZCI6..."
3

Then you can grab the access token and ask for user data by doing a GET request to the /userinfo endpoint:

curl -X GET \
-H "Cache-Control: no-cache" \
"http://localhost:8000/userinfo/?access_token=82b35f3d810f4cf49dd7a52d4b22a594"

8.2 Expiration and Refresh of Access Tokens

If you receive a 401 Unauthorized status when using the access token, this probably means that your access token
has expired.

The RP application can request a new access token by using the refresh token. Send a POST request to the /token
endpoint with the following request parameters:

curl -X POST \
-H "Cache-Control: no-cache" \
-H "Content-Type: application/x-www-form-urlencoded" \
"http://localhost:8000/token/" \
-d "client_id=651462" \
-d "client_secret=37blc4f£f826£8d78bd45e25bad75a2c0" \
-d "grant_type=refresh_token" \
-d "refresh_token=0bac2d80d75d46658b0b31d3778039bb"

22 Chapter 8. Access Tokens

CHAPTER
NINE

SESSION MANAGEMENT

The OpenID Connect Session Management 1.0 specification complements the core specification by defining how to
monitor the End-User’s login status at the OpenID Provider on an ongoing basis so that the Relying Party can log out
an End-User who has logged out of the OpenID Provider.

9.1 Setup

Somewhere in your Django settings.py:

MIDDLEWARE_CLASSES = [

'oidc_provider.middleware.SessionManagementMiddleware',

]

OIDC_SESSION_MANAGEMENT_ENABLE = True

If you’re in a multi-server setup, you might also want to add OIDC_UNAUTHENTICATED_SESSION_MANAGEMENT_KEY
to your settings and set it to some random but fixed string. While authenticated clients have a session that can be used
to calculate the browser state, there is no such thing for unauthenticated clients. Hence this value. By default a value is
generated randomly on startup, so this will be different on each server. To get a consistent value across all servers you
should set this yourself.

9.2 Example RP iframe

<!DOCTYPE html>
<html>
<head>
<meta charset="IS0-8859-1">
<title>RP Iframe</title>
</head>
<body onload="javascript:startChecking()">
<iframe id="op-iframe" src="http://localhost:8000/check-session-iframe/" frameborder=
~"0" width="0" height="0"></iframe>
</body>
<script>
var targetOP = "http://localhost:8000";

window.addEventListener("message", receiveMessage, false);

(continues on next page)

23

https://openid.net/specs/openid-connect-session-1_0.html

django-oidc-provider Documentation, Release 0.8.0

(continued from previous page)

function startChecking() {

checkStatus();

setInterval ('checkStatus()', 1000%60); // every 60 seconds
}

function checkStatus() {
var clientId = '';
var sessionState = '';
var data = clientId + + sessionState;

document.getElementById('op-iframe').contentWindow.postMessage(data,..

v

< targetOP);
}
function receiveMessage(event) {
if (event.origin !== targetOP) {
// Origin did not come from the OP.
return;
}
if (event.data === 'unchanged') {
// User is still logged in to the OP.
} else if (event.data === 'changed') {

// Perform re-authentication with prompt=none to obtain the current session.
-»state at the OP.

} else {
// Error.
console.log('Something goes wrong!"');
}
3
</script>
</html>

9.3 RP-Initiated Logout

An RP can notify the OP that the End-User has logged out of the site, and might want to log out of the OP as well.
In this case, the RP, after having logged the End-User out of the RP, redirects the End-User’s User Agent to the OP’s
logout endpoint URL.

This URL is normally obtained via the end_session_endpoint element of the OP’s Discovery response.
Parameters that are passed as query parameters in the logout request:

e id_token_hint
Previously issued ID Token passed to the logout endpoint as a hint about the End-User’s current authenti-
cated session with the Client.

e post_logout_redirect_uri
URL to which the RP is requesting that the End-User’s User Agent be redirected after a logout has been
performed.

* state
OPTIONAL. Opaque value used by the RP to maintain state between the logout request and the callback
to the endpoint specified by the post_logout_redirect_uri query parameter.

24 Chapter 9. Session Management

django-oidc-provider Documentation, Release 0.8.0

Example redirect:

http://localhost:8000/end-session/?id_token_hint=eyJhbGciOiJSUzI1INiIsImtpZCI6ImQwM. ..&
—post_logout_redirect_uri=http://rp.example.com/logged-out/&state=c91c03eabc46a86

9.3. RP-Initiated Logout 25

django-oidc-provider Documentation, Release 0.8.0

26 Chapter 9. Session Management

CHAPTER
TEN

TOKEN INTROSPECTION

The OAuth 2.0 Authorization Framework extends its scope with many other speficications. One of these is the OAuth
2.0 Token Introspection (RFC 7662) which defines a protocol that allows authorized protected resources to query the
authorization server to determine the set of metadata for a given token that was presented to them by an OAuth 2.0
client.

10.1 Client Setup

In order to enable this feature, some configurations must be performed in the Client.
* The scope key:token_introspection must be added to the client’s scope.
If OIDC_INTROSPECTION_VALIDATE_AUDIENCE_SCOPE is set to True then:

e The client_id must be added to the client’s scope.

10.2 Introspection Endpoint

The introspection endpoint (/introspect) is an OAuth 2.0 endpoint that takes a parameter representing an OAuth
2.0 token and returns a JSON document representing the meta information surrounding the token.

The introspection endpoint its called using an HTTP POST request with parameters sent as “application/x-www-form-
urlencoded” and Basic authentication (base64(client_id:client_secret).

Parameters:

* token
REQUIRED. The string value of an access_token previously issued.

Example request:

curl -X POST \

http://localhost:8000/introspect \

-H "Authorization: Basic NDgwNTQ20mIxOGIyODVmY2ESN2Fm' \
-H 'Content-Type: application/x-www-form-urlencoded' \
-d token=6dd4b859706944848183d26f2fcb99c6

Example Response:

{
"aud": "480546",
"sub": "1",
(continues on next page)

27

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662

django-oidc-provider Documentation, Release 0.8.0

"exp": 1538971676,

"iat": 1538971076,

"iss": "http://localhost:8000",
"active": true,

"client_id": "480546"

(continued from previous page)

10.3 Introspection Endpoint Errors

In case of error, the Introspection Endpoint will return a JSON document with the key active: false

Example Error Response:

{

"active": "false"

}

28

Chapter 10. Token Introspection

CHAPTER
ELEVEN

SETTINGS

Customize django-oidc-provider so that it fits your project’s needs.

11.1 OIDC_LOGIN_URL

OPTIONAL. str. Used to log the user in. By default Django’s LOGIN_URL will be used. Read more in the Django
docs

str. Default is /accounts/login/ (Django’s LOGIN_URL).

11.2 SITE_URL

OPTIONAL. str. The OP server url.
If not specified, it will be automatically generated using request.scheme and request.get_host().

For example http://localhost:8000.

11.3 OIDC_AFTER_USERLOGIN_HOOK

OPTIONAL. str. A string with the location of your function. Provide a way to plug into the process after the user has
logged in, typically to perform some business logic.

Default is:

def default_hook_func(request, user, client):
return None

Return None if you want to continue with the flow.

The typical situation will be checking some state of the user or maybe redirect him somewhere. With request you
have access to all OIDC parameters. Remember that if you redirect the user to another place then you need to take him
back to the authorize endpoint (use request.get_full_path() as the value for a “next” parameter).

29

https://docs.djangoproject.com/en/1.11/ref/settings/#login-url
https://docs.djangoproject.com/en/1.11/ref/settings/#login-url

django-oidc-provider Documentation, Release 0.8.0

11.4 OIDC_AFTER_END_SESSION_HOOK

OPTIONAL. str. A string with the location of your function. Provide a way to plug into the log out process just before
calling Django’s log out function, typically to perform some business logic.

Default is:

def default_after_end_session_hook(request, id_token-None, post_logout_redirect_uri=None,
-, state=None, client=None, next_page=None):
return None

Return None if you want to continue with the flow.

11.5 OIDC_CODE_EXPIRE

OPTIONAL. int. Code object expiration after been delivered.

Expressed in seconds. Default is 60*10.

11.6 OIDC_DISCOVERY_CACHE_ENABLE

OPTIONAL. bool. Enable caching the response on the discovery endpoint, by using default cache. Cache key will be
a combination of site URL and types supported by the provider, changing any of these will invalidate stored value.

Default is False.

11.7 OIDC_DISCOVERY_CACHE_EXPIRE

OPTIONAL. int. Discovery endpoint cache expiration time expressed in seconds.

Expressed in seconds. Default is 60*10.

11.8 OIDC_EXTRA_SCOPE_CLAIMS

OPTIONAL. str. A string with the location of your class. Default is oidc_provider.lib.claims.ScopeClaims.

Used to add extra scopes specific for your app. OpenID Connect RP’s will use scope values to specify what access
privileges are being requested for Access Tokens.

Read more about how to implement it in Scopes and Claims section.

30 Chapter 11. Settings

django-oidc-provider Documentation, Release 0.8.0

11.9 OIDC_IDTOKEN_INCLUDE_CLAIMS

OPTIONAL. bool. If enabled, id_token will include standard claims of the user (email, first name, etc.).

Default is False.

11.10 OIDC_IDTOKEN_EXPIRE

OPTIONAL. int. ID Token expiration after been delivered.

Expressed in seconds. Default is 60*10.

11.11 OIDC_IDTOKEN_PROCESSING_HOOK

OPTIONAL. stror (list, tuple).

A string with the location of your function hook or 1list or tuple with hook functions. Here you can add extra
dictionary values specific for your app into id_token.

The list or tuple is useful when you want to set multiple hooks, i.e. one for permissions and second for some special
field.

The hook function receives following arguments:

e id_token: the ID token dictionary which contains at least the basic claims (iss, sub, aud, exp, iat,
auth_time), but may also contain other claims. If several processing hooks are configured, then the claims
of the previous hook are also present in the passed dictionary.

* user: User object of the authenticating user,
* token: the Token object created for the authentication request, and
* request: Django request object of the authentication request.

The hook function should return the modified ID token as dictionary.

Note: It is a good idea to add **kwargs to the hook function argument list so that the hook function will work even
if new arguments are added to the hook function call signature.

Default is:

def default_idtoken_processing_hook(id_token, user, token, request, **kwargs):

return id_token

11.9. OIDC_IDTOKEN_INCLUDE_CLAIMS 31

django-oidc-provider Documentation, Release 0.8.0

11.12 OIDC_IDTOKEN_SUB_GENERATOR

OPTIONAL. str. A string with the location of your function. sub is a locally unique and never reassigned identifier
within the Issuer for the End-User, which is intended to be consumed by the Client.

The function receives a user object and returns a unique string for the given user.

Default is:

def default_sub_generator(user):

return str(user.id)

11.13 OIDC_INTROSPECTION_PROCESSING_HOOK

OPTIONAL. str or (list, tuple).

A string with the location of your function hook or 1list or tuple with hook functions. Here you can add extra
dictionary values specific to your valid response value for token introspection.

The function receives an introspection_response dictionary, a client instance and an id_token dictionary.
If the token is generated by client_credentials grant then id_token is None.

Default is:

def default_introspection_processing_hook(introspection_response, client, id_token):

return introspection_response

11.14 OIDC_INTROSPECTION_VALIDATE_AUDIENCE_SCOPE

OPTIONAL bool

A flag which toggles whether the audience is matched against the client resource scope when calling the introspection
endpoint.

Must be False to support introspecting client_crendentials tokens.

Default is True.

11.15 OIDC_SESSION_MANAGEMENT_ENABLE

OPTIONAL. bool. Enables OpenID Connect Session Management 1.0 in your provider. See the Session Management
section.

Default is False.

32 Chapter 11. Settings

django-oidc-provider Documentation, Release 0.8.0

11.16 OIDC_UNAUTHENTICATED_SESSION_MANAGEMENT_KEY

OPTIONAL. Supply a fixed string to use as browser-state key for unauthenticated clients. See the Session Management
section.

Default is a string generated at startup.

11.17 OIDC_SKIP_CONSENT EXPIRE

OPTIONAL. int. How soon User Consent expires after being granted.

Expressed in days. Default is 30%3.

11.18 OIDC_TOKEN_EXPIRE

OPTIONAL. int. Token object (access token) expiration after being created.

Expressed in seconds. Default is 60*60.

11.19 OIDC_USERINFO

OPTIONAL. str. A string with the location of your function. See the Scopes and Claims section.

The function receives a claims dictionary with all the standard claims and user instance. Must returns the claims
dict again.

Example usage:

def userinfo(claims, user):

claims['name'] = ' '.format (user.first_name, user.last_name)
claims['given_name'] = user.first_name
claims['family_name'] = user.last_name
claims['email'] = user.email
claims['address']['street_address'] = '...

return claims

Note: Please DO NOT add extra keys or delete the existing ones in the claims dict. If you want to add extra claims
to some scopes you can use the OIDC_EXTRA_SCOPE_CLAIMS setting.

11.16. OIDC_UNAUTHENTICATED_SESSION_MANAGEMENT_KEY 33

django-oidc-provider Documentation, Release 0.8.0

11.20 OIDC_GRANT TYPE_PASSWORD ENABLE

OPTIONAL. A boolean whether to allow the Resource Owner Password Credentials Grant. https://tools.ietf.org/html/
rfc6749#section-4.3

Important: From the specification: “Since this access token request utilizes the resource owner’s password, the
authorization server MUST protect the endpoint against brute force attacks (e.g., using rate-limitation or generating
alerts).”

There are many ways to implement brute force attack prevention. We cannot decide what works best for you, so you
will have to implement a solution for this that suits your needs.

11.21 OIDC_TEMPLATES

OPTIONAL. A dictionary pointing to templates for authorize and error pages. Default is:

{

"authorize': 'oidc_provider/authorize.html',
'error': 'oidc_provider/error.html’

}

See the Templates section.

The templates that are not specified here will use the default ones.

11.22 OIDC_INTROSPECTION_RESPONSE_SCOPE_ENABLE

OPTIONAL bool
A flag which toggles whether the scope is returned with successful response on introspection request.
Must be True to include scope into the successful response

Default is False.

34 Chapter 11. Settings

https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc6749#section-4.3

CHAPTER
TWELVE

Use signals in your application to get notified when some actions occur.

For example:

SIGNALS

from django.dispatch import receiver

from oidc_provider.signals import user_decline_consent

@receiver(user_decline_consent)
def my_callback(sender, **kwargs):
print (kwargs)
print('Ups! Some user has declined the consent.')

12.1 user_accept_consent

Sent when a user accept the authorization page for some client.

12.2 user_decline_consent

Sent when a user decline the authorization page for some client.

35

django-oidc-provider Documentation, Release 0.8.0

36 Chapter 12. Signals

CHAPTER
THIRTEEN

EXAMPLES

13.1 Pure JS client using Implicit Flow

Testing OpenID Connect flow can be as simple as putting one file with a few functions on the client and calling the
provider. Let me show.

01. Setup the provider
You can use the example project code to run your OIDC Provider at localhost: 8000.

Go to the admin site and create a public client with a response_type id_token token and a redirect_uri http://
localhost:3000.

Note: Remember to create at least one RSA Key for the server with python manage.py creatersakey

02. Create the client
As relying party we are going to use a JS library created by Nat Sakimura. Here is the article.

index.html:

<!DOCTYPE html>
<html>
<head>

<title>0IDC RP</title>

</head>
<body>

<center>
<h1>0penID Connect RP Example</h1>
<button id="login-button">Login</button>
</center>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.2/jquery.min. js"></
- script>
<script src="https://www.sakimura.org/test/openidconnect.js"></script>

<script type="text/javascript">
$(function() {
var clientInfo = {

(continues on next page)

37

https://nat.sakimura.org/2014/12/10/making-a-javascript-openid-connect-client/

django-oidc-provider Documentation, Release 0.8.0

(continued from previous page)
client_id : '',
redirect_uri : 'http://localhost:3000'
bE

0IDC.setClientInfo(clientInfo);
var providerInfo = OIDC.discover('http://localhost:8000');

0IDC.setProviderInfo(providerInfo);
0IDC.storeInfo(providerInfo, clientInfo);

// Restore configuration information.
0IDC.restoreInfo();

// Get Access Token
var token = OIDC.getAccessToken();

// Make userinfo request using access_token.
if (token !== null) {
$.get('http://localhost:8000/userinfo/?access_token="'+token, function(data.

=) {
alert ('USERINFO: '+ JSON.stringify(data));
5D 3
}
// Make an authorization request if the user click the login button.
$("#login-button').click(function (event) {
0IDC.login({
scope : 'openid profile email',
response_type : 'id_token token'
b
B;
19K
</script>
</body>
</html>

Note: Remember that you must set your client_id (line 21).

03. Make an authorization request

By clicking the login button an authorization request has been made to the provider. After you accept it, the provider
will redirect back to your previously registered redirect_uri with all the tokens requested.

04. Requesting user information

Now having the access_token in your hands you can request the user information by making a request to the /userinfo
endpoint of the provider.

In this example we display information in the alert box.

38 Chapter 13. Examples

CHAPTER
FOURTEEN

CONTRIBUTE

We love contributions, so please feel free to fix bugs, improve things, provide documentation. These are the steps:
* Create an issue and explain your feature/bugfix.
* Wait collaborators comments.
* Fork the project and create new branch from develop.
* Make your feature addition or bug fix.
* Add tests and documentation if needed.

* Create pull request for the issue to the develop branch.

‘Wait collaborators reviews.

14.1 Running Tests

Use tox for running tests in each of the environments, also to run coverage and flake8 among:

Run all tests.
$ tox

Run with Python 3.11 and Django 4.2.
tox -e py31ll-django42

R2]

Run single test file on specific environment.
$ tox -e py31l-django42 -- tests/cases/test_authorize_endpoint.py

We use Github Actions to automatically test every commit to the project.

14.2 Improve Documentation

We use Sphinx to generate this documentation. If you want to add or modify something just:
* Install Sphinx (pip install sphinx) and the auto-build tool (pip install sphinx-autobuild).
¢ Move inside the docs folder. cd docs/
* Generate and watch docs by running sphinx-autobuild . _build/.

e Open http://127.0.0.1:8000 in a browser.

39

https://pypi.python.org/pypi/tox
https://github.com/juanifioren/django-oidc-provider/actions
http://www.sphinx-doc.org/

django-oidc-provider Documentation, Release 0.8.0

40 Chapter 14. Contribute

CHAPTER
FIFTEEN

CHANGELOG

All notable changes to this project will be documented in this file.

15.1 Unreleased

15.2 0.8.2

2023-12-15
* Added: Discovery endpoint response caching. Introducing OIDC_DISCOVERY_CACHE_ENABLE.
* Fixed: ResponseType data migration.

* Fixed: correctly verify PKCE secret in token endpoint.

15.3 0.8.1

2023-10-22
* Changed: create_token and create_code are now methods on base classes to enable customization.
* Changed: extract “is consent skip allowed” decision from the view to the endpoint.

* Fixed: race condition in authorization code, parallel requests may reuse same token.

15.4 0.8.0

2023-05-05
* Changed: now supporting latest versions of Django.
¢ Changed: drop support for Python 2 and Django lower than 3.2.
* Added: scope on token and introspection endpoints.
* Changed: Use static instead of deprecated staticfiles template tag.

* Fixed: example in docs for translatable scopes (ugettext).

41

django-oidc-provider Documentation, Release 0.8.0

15.5 0.7.0

2018-10-17

Added: support multiple response types per client.

Added: make version available in code.

Added: token introspection docs.

Changed: drop support for Django versions lower than 1.11.

Changed: create RSA key command. Increment key size to 2048.

Fixed: OIDC_IDTOKEN_INCLUDE_CLAIMS used with custom claims setting.

Fixed: bug in prompt parameter (with space-separated values).

15.6 0.6.2

2018-08-03

Added: support introspection on client credentials tokens.
Changed: accept lowercase “bearer” in Authorization header.
Fixed: ScopeClaims class.

Fixed: code is not zip safe.

15.7 0.6.1

2018-07-10

Added: token instrospection endpoint support (RFC7662).

Added: request in password grant authenticate call.

Changed: dropping support for Django versions before 1.8.

Changed: pass token and request to OIDC_IDTOKEN_PROCESSING_HOOK.
Fixed: CORS OPTIONS request blocked on userinfo request.

Fixed: settings to support falsy valued overrides.

Fixed: token introspection “aud” and “client_id” response.

Fixed: Token Model str() crashes when using client credentials grant.

42

Chapter 15. Changelog

django-oidc-provider Documentation, Release 0.8.0

15.8 0.6.0

2018-04-13

e Added: OAuth2 grant_type client_credentials support.

Added: pep8 compliance and checker.

Added: Setting OIDC_IDTOKEN_INCLUDE_CLAIMS supporting claims inside id_token.

Changed: Test suit now uses pytest.

Fixed:

Infinite callback loop in the check-session iframe.

15.9 0.5.3

2018-03-09

* Fixed: Update project to support Django 2.0

15.10 0.5.2

2017-08-22

* Fixed: infinite login loop if “prompt=login” (#198)

* Fixed: Django 2.0 deprecation warnings (#185)

15.11 0.5.1

2017-07-11

Changed: Documentation template changed to Read The Docs.

Fixed:
Fixed:
Fixed:
Fixed:
Fixed:
Fixed:
Fixed:

install_requires has not longer pinned versions.

Removed infinity loop during authorization stage when prompt=login has been send.
Changed prompt handling as set of options instead of regular string.

Redirect URI must match exactly with given in query parameter.

Stored user consent are useful for public clients too.

documentation for custom scopes handling.

Scopes during refresh and code exchange are being taken from authorization request and not from query
parameters.

15.8. 0.6.0

43

django-oidc-provider Documentation, Release 0.8.0

15.12 0.5.0

2017-05-18

Added: signals when user accept/decline the authorization page.

Added: OIDC_AFTER_END_SESSION_HOOK setting for additional business logic.
Added: feature granttype password.

Added: require_consent and reuse_consent are added to Client model.

Changed: OIDC_SKIP_CONSENT_ALWAYS and OIDC_SKIP_CONSENT_ENABLE are removed from set-
tings.

Fixed: timestamps with unixtime (instead of django timezone).
Fixed: field refresh_token cannot be primary key if null.

Fixed: create_uri_exceptions are now being logged at Exception level not DEBUG.

15.13 0.4.4

2016-11-29

Fixed: Bug in Session Management middleware when using Python 3.

Fixed: Translations handling.

15.14 0.4.3

2016-11-02

Added: Session Management 1.0 support.
Added: post_logout_redirect_uris into admin.
Changed: Package url names.

Changed: Rename /logout/ url to /end-session/.

Fixed: bug when trying authorize with response_type id_token without openid scope.

15.15 0.4.2

2016-10-13

Added: support for client redirect URIs with query strings.
Fixed: bug when generating secret_key value using admin.
Changed: client is available to OIDC_EXTRA_SCOPE_CLAIMS implementations via self.client.

Changed: the constructor signature for ScopeClaims has changed, it now is called with the Token as its single
argument.

44

Chapter 15. Changelog

django-oidc-provider Documentation, Release 0.8.0

15.16 0.4.1

2016-10-03
* Changed: update pyjwkest to version 1.3.0.

* Changed: use Cryptodome instead of Crypto lib.

15.17 0.4.0

2016-09-12
* Added: support for Hybrid Flow.

* Added: new attributes for Clients: Website url, logo, contact email, terms url.

¢ Added: polish translations.

¢ Added: examples section in documentation.

 Fixed: CORS in discovery and userinfo endpoint.

* Fixed: client type public bug when created using the admin.

* Fixed: missing OIDC_TOKEN_EXPIRE setting on implicit flow.

15.18 0.3.7

2016-08-31
¢ Added: support for Django 1.10.
¢ Added: initial translation files (ES, FR).
* Added: support for at_hash parameter.

* Fixed: empty address dict in userinfo response.

15.19 0.3.6

2016-07-07
* Changed: OIDC_USERINFO setting.

15.20 0.3.5

2016-06-21

Added: field date_given in UserConsent model.

Added: verbose names to all model fields.
* Added: customize scopes names and descriptions on authorize template.

e Changed: OIDC_EXTRA_SCOPE_CLAIMS setting.

15.16. 0.4.1

45

django-oidc-provider Documentation, Release 0.8.0

15.21 0.3.4

2016-06-10
* Changed: Make SITE_URL setting optional.

* Fixed: Missing migration.

15.22 0.3.3

2016-05-03

* Fixed: Important bug with PKCE and form submit in Auth Request.

15.23 0.3.2

2016-04-26
* Added: choose type of client on creation.
* Added: implement Proof Key for Code Exchange by OAuth Public Clients.
* Added: support for prompt parameter.
* Added: support for different client JWT tokens algorithm.

» Fixed: not auto-approve requests for non-confidential clients (publics).

15.24 0.3.1

2016-03-09

* Fixed: response_type was not being validated (OpenID request).

15.25 0.3.0

2016-02-23
e Added: support OAuth2 requests.
* Added: decorator for protecting views with OAuth2.
* Added: setting OIDC_IDTOKEN_PROCESSING_HOOK.

46 Chapter 15. Changelog

django-oidc-provider Documentation, Release 0.8.0

15.26 0.2.5

2016-02-03
e Added: Setting OIDC_SKIP_CONSENT_ALWAYS.
* Changed: Removing OIDC_RSA_KEY_FOLDER setting. Moving RSA Keys to the database.
* Changed: Update pyjwkest to version 1.1.0.
* Fixed: Nonce parameter missing on the decide form.

* Fixed: Set Allow-Origin header to jwks endpoint.

15.27 0.2.4

2016-01-20
* Added: Auto-generation of client ID and SECRET using the admin.
* Added: Validate nonce parameter when using Implicit Flow.

* Fixed: generating RSA key by ignoring value of OIDC_RSA_KEY_FOLDER.

* Fixed: make OIDC_AFTER_USERLOGIN_HOOK and OIDC_IDTOKEN_SUB_GENERATOR to be lazy im-

ported by the location of the function.

* Fixed: problem with a function that generate urls for the /.well-known/openid-configuration/ endpoint.

15.28 0.2.3

2016-01-06
* Added: Make user and client unique on UserConsent model.
* Added: Support for URL’s without end slash.
¢ Changed: Upgrade pyjwkest to version 1.0.8.
* Fixed: String format error in models.

* Fixed: Redirect to non http urls fail (for Mobile Apps).

15.29 0.2.1

2015-10-21
* Added: refresh token flow.
» Changed: upgrade pyjwkest to version >= 1.0.6.
* Fixed: Unicode error in Client model.
* Fixed: Bug in creatersakey command (when using Python 3).

* Fixed: Bug when updating pyjwkest version.

15.26. 0.2.5

47

django-oidc-provider Documentation, Release 0.8.0

15.30 0.2.0

2015-09-25

* Changed: UserInfo model was removed. Now you can add your own model using OIDC_USERINFO setting.
¢ Fixed: ID token does NOT contain kid.

15.31 0.1.2

2015-08-04

Added: add token_endpoint_auth_methods_supported to discovery.

Fixed: missing commands folder in setup file.

15.32 0.1.1

2015-07-31

Added: sending access_token as query string parameter in UserInfo Endpoint.
Added: support HTTP Basic client authentication.
Changed: use models setting instead of User.

Fixed: in python 2: “aud” and “nonce” parameters didn’t appear in id_token.

15.33 0.1.0

2015-07-17

Added: now id tokens are signed/encrypted with RS256.

Added: command for easily generate random RSA key.

Added: jwks uri to discovery endpoint.

Added: id_token_signing_alg_values_supported to discovery endpoint.

Fixed: nonce support for both Code and Implicit flow.

15.34 0.0.7

2015-07-06

Added: support for Python 3.

Added: way of remember user consent and skipt it (OIDC_SKIP_CONSENT_ENABLE).
Added: setting OIDC_SKIP_CONSENT_EXPIRE.

Changed: now OIDC_EXTRA_SCOPE_CLAIMS must be a string, to be lazy imported.

48

Chapter 15. Changelog

django-oidc-provider Documentation, Release 0.8.0

15.35 0.0.6

2015-06-16
¢ Added: better naming for models in the admin.
* Changed: now tests run without the need of a project configured.

* Fixed: error when returning address_formatted claim.

15.36 0.0.5

2015-05-09
* Added: support for Django 1.8.

* Fixed: validation of scope in UserInfo endpoint.

15.37 0.0.4

2015-04-22
* Added: initial migrations.
* Fixed: important bug with id_token when using implicit flow.
¢ Fixed: validate Code expiration in Auth Code Flow.

* Fixed: validate Access Token expiration in UserInfo endpoint.

15.38 0.0.3

2015-04-15
* Added: normalize gender field in UserInfo.
* Changed: make address_formatted a property inside UserInfo.

* Fixed: important bug in claims response.

15.39 0.0.2

2015-03-26
* Added: setting OIDC_AFTER_USERLOGIN_HOOK.

* Fixed: tests failing because an incorrect tag in one template.

15.35. 0.0.6

49

django-oidc-provider Documentation, Release 0.8.0

15.40 0.0.1

2015-03-13
e Added: provider Configuration Information endpoint.
¢ Added: setting OIDC_IDTOKEN_SUB_GENERATOR.
* Changed: now use setup in OIDC_EXTRA_SCOPE_CLAIMS setting.

15.41 0.0.0

2015-02-26

50

Chapter 15. Changelog

CHAPTER
SIXTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

51

	Installation
	Requirements
	Quick Installation

	Relying Parties
	Properties
	Using the admin
	Custom view
	Programmatically

	Server Keys
	Templates
	Scopes and Claims
	How to populate standard claims
	How to add custom scopes and claims

	User Consent
	Properties

	OAuth2 Server
	Protecting Views
	Client Credentials Grant

	Access Tokens
	Obtaining an Access Token
	Expiration and Refresh of Access Tokens

	Session Management
	Setup
	Example RP iframe
	RP-Initiated Logout

	Token Introspection
	Client Setup
	Introspection Endpoint
	Introspection Endpoint Errors

	Settings
	OIDC_LOGIN_URL
	SITE_URL
	OIDC_AFTER_USERLOGIN_HOOK
	OIDC_AFTER_END_SESSION_HOOK
	OIDC_CODE_EXPIRE
	OIDC_DISCOVERY_CACHE_ENABLE
	OIDC_DISCOVERY_CACHE_EXPIRE
	OIDC_EXTRA_SCOPE_CLAIMS
	OIDC_IDTOKEN_INCLUDE_CLAIMS
	OIDC_IDTOKEN_EXPIRE
	OIDC_IDTOKEN_PROCESSING_HOOK
	OIDC_IDTOKEN_SUB_GENERATOR
	OIDC_INTROSPECTION_PROCESSING_HOOK
	OIDC_INTROSPECTION_VALIDATE_AUDIENCE_SCOPE
	OIDC_SESSION_MANAGEMENT_ENABLE
	OIDC_UNAUTHENTICATED_SESSION_MANAGEMENT_KEY
	OIDC_SKIP_CONSENT_EXPIRE
	OIDC_TOKEN_EXPIRE
	OIDC_USERINFO
	OIDC_GRANT_TYPE_PASSWORD_ENABLE
	OIDC_TEMPLATES
	OIDC_INTROSPECTION_RESPONSE_SCOPE_ENABLE

	Signals
	user_accept_consent
	user_decline_consent

	Examples
	Pure JS client using Implicit Flow

	Contribute
	Running Tests
	Improve Documentation

	Changelog
	Unreleased
	0.8.2
	0.8.1
	0.8.0
	0.7.0
	0.6.2
	0.6.1
	0.6.0
	0.5.3
	0.5.2
	0.5.1
	0.5.0
	0.4.4
	0.4.3
	0.4.2
	0.4.1
	0.4.0
	0.3.7
	0.3.6
	0.3.5
	0.3.4
	0.3.3
	0.3.2
	0.3.1
	0.3.0
	0.2.5
	0.2.4
	0.2.3
	0.2.1
	0.2.0
	0.1.2
	0.1.1
	0.1.0
	0.0.7
	0.0.6
	0.0.5
	0.0.4
	0.0.3
	0.0.2
	0.0.1
	0.0.0

	Indices and tables

